br Minami D Takigawa N Takeda H Takata
41. Minami D, Takigawa N, Takeda H, Takata M, Ochi N, Ichihara E, et al. Synergistic effect of olaparib with combination of cisplatin on PTEN-deficient lung cancer cells. Mol Cancer Res 2013;11(2):140-8.
42. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007;7(3):169-81.
43. Ghosh G, Lian X, Kron SJ, Palecek SP. Properties of resistant LY 294002 generated from lung cancer cell lines treated with EGFR inhibitors. BMC Cancer 2012;12:95.
44. Chen G, Kronenberger P, Teugels E, Umelo IA, De Greve J. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Med 2012;10:28.
45. Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, et al. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer 2013;12(1):94.
46. Singh S, Bora-Singhal N, Kroeger J, Laklai H. Chellappan SP. betaArrestin-1 and Mcl-1 modulate self-renewal growth of cancer stem-like side-population cells in non-small cell lung cancer. PLoS One 2013;8(2):e55982.
47. Rosell R, Robinet G, Szczesna A, Ramlau R, Constenla M, Mennecier BC, et al. Randomized phase II study of cetuximab plus cisplatin/ vinorelbine compared with cisplatin/vinorelbine alone as first-line therapy in EGFR-expressing advanced non-small-cell lung cancer. Ann Oncol 2008;19(2):362-9.
49. Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 2011;12(7):720-6.
50. Papapetrou EP, Tomishima MJ, Chambers SM, Mica Y, Reed E, Menon J, et al. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci U S A 2009;106(31):12759-64.
57. Herreros-Villanueva M, Zhang JS, Koenig A, Abel EV, Smyrk TC, Bamlet WR, et al. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogene 2013;2:e61.
58. Tapia MA, Gonzalez-Navarrete I, Dalmases A, Bosch M, Rodriguez-Fanjul V, Rolfe M, et al. Inhibition of the canonical IKK/NF kappa B
59. Ischenko I, Liu J, Petrenko O, Hayman MJ. Transforming growth factor-beta signaling network regulates plasticity and lineage commitment of lung cancer cells. Cell Death Differ 2014;21(8):1218-28.
60. Chen G, Kronenberger P, Teugels E, Umelo IA, De Greve J. Effect of siRNAs targeting the EGFR T790M mutation in a non-small cell lung cancer cell line resistant to EGFR tyrosine kinase inhibitors and combination with various agents. Biochem Biophys Res Commun 2013;431(3):623-9.
Colloids and Surfaces B: Biointerfaces 182 (2019) 110365
Contents lists available at ScienceDirect
Colloids and Surfaces B: Biointerfaces
journal homepage: www.elsevier.com/locate/colsurfb
Cationic versus anionic core-shell nanogels for transport of cisplatin to lung T cancer cells
Alejandra Gonzalez-Uriasa, Ivan Zapata-Gonzalezb, , Angel Licea-Claveriea, , Alexei F. Licea-Navarroc, Johanna Bernaldez-Sarabiac, Karla Cervantes-Luevanoc
a Tecnológico Nacional de México/I.T. de Tijuana, Centro de Graduados e Investigación en Química, A.P. 1166, C.P. 22000 Tijuana, B.C., Mexico
b Cátedras CONACYT-Tecnológico Nacional de México/I.T. de Tijuana, Centro de Graduados e Investigación en Química, A.P. 1166, C.P. 22000, Tijuana, B.C., Mexico
c Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Innovación Biomédica, C.P. 22860, Ensenada, B.C., Mexico
Keywords:
Core-shell nanoparticles
Nanogels
Cisplatin
Drug delivery
pH-sensitive polymers
Lung cancer
Stimuli-responsive polymeric nanogels have been proposed as nanocarriers of cisplatin to maximize its effect for cancer treatment. In this work, a comparative study between anionic core nanogels (ACN) and cationic core nanogels (CCN), both with PEGylated shells, has been performed. The nanogels were synthesized with different cross-linked cores: CCN with poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) and ACN with poly(2-methacryloyloxi benzoic acid) (P2MBA). Cisplatin chelate formation with carboxylic acids (ACN) or metal co-ordination with the amine groups (CCN) leads to a high loading of cisplatin into the nanocarriers. The nano-carriers ability to contain and modulate the supply of cisplatin was tested according to the pH of the medium, in which ACN efficiently released the drug at a typical pH value of a tumor tissue (pH = 6.8) while CCN only releases the drug at more acidic, endosome like, conditions (pH = 5). The effect of drug-free nanogels on cell lines NCI-H1437 (non-small cell lung carcinoma) was evaluated, showing biocompatibility at all concentrations studied (30–400 μg/mL) for both ACN and CCN. However, the survival percentage of the cells in contact with cisplatin-loaded nanogels were dependent on the dose, the time of contact and the type of nanogel. Cisplatin loaded CCN induced lower cell viability after 48 h of contact. Fluorescence microscopy showed a viable inter-nalization of the CCN nanogels, this was confirmed by flow cytometry in which 37.8% of cells contained drug loaded CCNs after 30 min of contact, representing a more effective nanocarrier for cisplatin to this cell-line.