Archives

  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • br Conclusion br This work

    2020-08-18

    
    4. Conclusion
    This work demonstrated the characterization and cytotoxicity of the biogenic MgONPs and Ag-MgONPs. The high throughput bio-materials characterization results revealed the successful fabrica-tion of the NPs. Particularly, the XPS and EDS results strongly evidenced the formation of Ag-MgONPs by bonding of Ag-O-Mg. The cytotoxicity assays revealed the Ag-MgONPs induced cell death in PC-3 13 C 6-3Nitrophenylhydrazine through activation of ROS production, cellular and nucleus damage. This work is worthy for the further study on molecular mechanisms of Ag-MgONPs induced cancer cell death.
    Conflict of interest
    The authors declare no competing Þnancial or other conßicts of interests.
    Acknowledgment
    This work was supported by Korea Research Fellowship Pro-gram through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2017H1D3A1A01052610).
    Appendix A. Supplementary material
    References
    [1] A. Afkham, L. Aghebati-Maleki, H. Siahmansouri, S. Sadreddini, M. Ahmadi, S. Dolati, N.M. Afkham, P. Akbarzadeh, F. Jadidi-Niaragh, V. Younesi, M. YouseÞ, Chitosan (CMD)-mediated co-delivery of SN38 and Snail-speciÞc siRNA as a useful anticancer approach against prostate cancer, Pharmacol. Rep. 70 (2018) 418Ð425.
    [5] M. Rahimi-Gorji, O. Pourmehran, M. Gorji-Bandpy, T.B. Gorji, CFD simulation of airßow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways, J. Mol. Liq. 209 (2015) 121Ð133.
    Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world, Biomed. Pharmacother. 97 (2018) 1521Ð1537.
    [10] K. Kathiresan, N.M. Alikunhi, S. Pathmanaban, A. Nabikhan, S. Kandasamy, Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger, Can. J. Microbiol. 56 (2010) 1050Ð1059. [11] A. ArŽvalo-Gallegos, J.S. Garcia-Perez, D. Carrillo-Nieves, R.A. Ramirez-Mendoza, H.M. Iqbal, R. Parra-Sald’var, Botryococcus braunii as a bioreactor for the production of nanoparticles with antimicrobial potentialities, Int. J. Nanomedicine 13 (2018) 5591Ð5604. [12] M. Bilal, T. Rasheed, H.M.N. Iqbal, C. Li, H. Hu, X. Zhang, Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities, Int. J. Biol. Macromol. 105 (2017) 393Ð400. [13] M. Bilal, T. Rasheed, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang, Macromolecular agents with antimicrobial potentialities: a drive to combat antimicrobial resistance, Int. J. Biol. Macromol. 103 (2017) 554Ð574. [14] K. Saravanakumar, R. Chelliah, D. MubarakAli, E. Jeevithan, D.-H. Oh, K. Kathiresan, M.-H. Wang, Fungal enzyme-mediated synthesis of chitosan nanoparticles and its biocompatibility, antioxidant and bactericidal properties, Int. J. Biol. Macromol. 118 (2018) 1542Ð1549. [15] R. Tahir, B. Muhammad, L. Chuanlong, M.N.I. HaÞz, Biomedical potentialities of taraxacum ofÞcinale-based nanoparticles biosynthesized using methanolic leaf extract, Curr. Pharm. Biotechnol. 18 (2017) 1116Ð1123. [16] T. Rasheed, M. Bilal, H.M.N. Iqbal, C. Li, Green biosynthesis of silver nanoparticles using leaves extract of artemisia vulgaris and their potential biomedical applications, Colloids Surf. B: Biointerfaces 158 (2017) 408Ð415. [17] K. Saravanakumar, R. Chelliah, S. Shanmugam, N.B. Varukattu, D.-H. Oh, K. Kathiresan, M.-H. Wang, Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis, J. Photochem. Photobiol., B 185 (2018) 126Ð135. [18] A. Nabikhan, S. Kandasamy, K. Kandasamy, Fabrication of antimicrobial cotton fabrics by treating with biogenic metal nanoparticles and their effect on clinical pathogens, Pharm. Nanotechnol. 3 (2015) 19Ð25. [19] M. Bilal, T. Rasheed, H. Iqbal, H. Hu, X. Zhang, Silver nanoparticles: biosynthesis and antimicrobial potentialities, Int. J. Pharmacol. 13 (2017) 832Ð845.
    [20] M.K. Patel, M. Zafaryab, M.M.A. Rizvi, V.V. Agrawal, Z.A. Ansari, B.D. Malhotra, S.G. Ansari, Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells, J. Nanoengineering Nanomanufacturing 3 (2013) 162Ð166.
    [21] L. Jahangiri, M. Kesmati, H. Najafzadeh, Evaluation of analgesic and anti-inßammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine, Eur. Rev. Med. Pharmacol. Sci. 17 (2013) 2706Ð2710. [22] S. Moeini-Nodeh, M. Rahimifard, M. Baeeri, M. Abdollahi, Functional improvement in ratsÕ pancreatic islets using magnesium oxide nanoparticles through antiapoptotic and antioxidant pathways, Biol. Trace Elem. Res. 175 (2017) 146Ð155.